Decision Trees are a popular machine learning algorithm used in the natural npm package for text classification tasks. In the natural
module, the DecisionTreeClassifier
class provides an implementation of this algorithm.
Here is an example of how to use DecisionTreeClassifier
to classify text:
const natural = require('natural'); const classifier = new natural.DecisionTreeClassifier(); // Train the classifier with some sample data classifier.addDocument('I am feeling happy today.', 'positive'); classifier.addDocument('This movie is boring and dull.', 'negative'); classifier.addDocument('The weather is beautiful outside.', 'positive'); classifier.addDocument('I hate Mondays.', 'negative'); classifier.train(); // Classify some new text const result1 = classifier.classify('I love this book!'); const result2 = classifier.classify('The food at this restaurant is terrible.'); console.log(result1); // Output: positive console.log(result2); // Output: negative
In this example, we first create a DecisionTreeClassifier
instance and train it with some sample data using the addDocument
method. We then call the train
method to train the classifier on the data.
We can then use the classify
method of the DecisionTreeClassifier
instance to classify new text into one of the previously defined categories.
The DecisionTreeClassifier
class also provides various other methods for working with decision trees, such as prune
for reducing the complexity of the tree and save
/load
for persisting the trained model to disk.