const natural = require('natural'); const classifier = new natural.BayesClassifier(); // Train the classifier with some sample data classifier.addDocument('I am feeling happy today.', 'positive'); classifier.addDocument('This movie is boring and dull.', 'negative'); classifier.addDocument('The weather is beautiful outside.', 'positive'); classifier.addDocument('I hate Mondays.', 'negative'); classifier.train(); // Classify some new text const result1 = classifier.classify('I love this book!'); const result2 = classifier.classify('The food at this restaurant is terrible.'); console.log(result1); // Output: positive console.log(result2); // Output: negative
In this example, we first create a BayesClassifier
instance and train it with some sample data using the addDocument
method. We then call the train
method to train the classifier on the data.
We can then use the classify
method of the BayesClassifier
instance to classify new text into one of the previously defined categories.
const natural = require('natural'); const classifier = new natural.LogisticRegressionClassifier(); // Train the classifier with some sample data classifier.addDocument('I am feeling happy today.', 'positive'); classifier.addDocument('This movie is boring and dull.', 'negative'); classifier.addDocument('The weather is beautiful outside.', 'positive'); classifier.addDocument('I hate Mondays.', 'negative'); classifier.train(); // Classify some new text const result1 = classifier.classify('I love this book!'); const result2 = classifier.classify('The food at this restaurant is terrible.'); console.log(result1); // Output: positive console.log(result2); // Output: negative
This example is similar to the previous one, but uses the LogisticRegressionClassifier
instead of the BayesClassifier
. The usage is similar to the previous example.
Note that the natural
module provides various other approaches to NLP classification, such as Support Vector Machines (SVM) and Decision Trees, which can be used in a similar way. The choice of classifier algorithm depends on the specific use case and the nature of the data.