// Generate a public-private key pair for RSA encryption function generateRSAKeyPair() { // Choose two distinct prime numbers p and q const p = 13; const q = 17; // Calculate n = p * q and phi = (p - 1) * (q - 1) const n = p * q; const phi = (p - 1) * (q - 1); // Choose an integer e such that 1 < e < phi and e is coprime to phi let e = 5; while (gcd(e, phi) !== 1) { e++; } // Calculate d such that d * e = 1 (mod phi) const d = modInverse(e, phi); // Return the public and private keys return { publicKey: [e, n], privateKey: [d, n] }; } // Encrypt a message using the public key function encryptRSA(message, publicKey) { const [e, n] = publicKey; const cipher = message.split('').map((char) => { const charCode = char.charCodeAt(0); const encryptedCharCode = modPow(charCode, e, n); return String.fromCharCode(encryptedCharCode); }); return cipher.join(''); } // Decrypt a message using the private key function decryptRSA(cipher, privateKey) { const [d, n] = privateKey; const message = cipher.split('').map((char) => { const charCode = char.charCodeAt(0); const decryptedCharCode = modPow(charCode, d, n); return String.fromCharCode(decryptedCharCode); }); return message.join(''); } // Helper function to calculate the greatest common divisor (GCD) of two numbers function gcd(a, b) { if (b === 0) { return a; } return gcd(b, a % b); } // Helper function to calculate the modular inverse of a number function modInverse(a, m) { const [gcd, x] = extendedGCD(a, m); if (gcd !== 1) { throw new Error(`No modular inverse for ${a} (mod ${m})`); } return (x % m + m) % m; } // Helper function to calculate the extended GCD of two numbers function extendedGCD(a, b) { if (b === 0) { return [a, 1, 0]; } const [gcd, x1, y1] = extendedGCD(b, a % b); const x = y1; const y = x1 - Math.floor(a / b) * y1; return [gcd, x, y]; } // Helper function to calculate the modular exponentiation of a number function modPow(base, exponent, modulus) { let result = 1; while (exponent > 0) { if (exponent % 2 === 1) { result = (result * base) % modulus; } base = (base * base) % modulus; exponent = Math.floor(exponent / 2); } return result; }
In this implementation, generateRSAKeyPair()
generates a public-private key pair for RSA encryption, encryptRSA(message, publicKey)
encrypts a message using the public key, and decryptRSA(cipher, privateKey)
decrypts a cipher using the private key.